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Delay times and reflection in chaotic cavities with absorption
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Absorption yields an additional exponential decay in open quantum systems which can be described by
shifting the~scattering! energyE along the imaginary axis,E1 i\/2ta . Using the random-matrix approach, we
calculate analytically the distribution of proper delay times~eigenvalues of the time-delay matrix! in chaotic
systems with broken time-reversal symmetry that is valid for an arbitrary number of generally nonequivalent
channels and an arbitrary absorption rateta

21 . The relation between the average delay time and the ‘‘norm-
leakage’’ decay function is found. Fluctuations above the average at large values of delay times are strongly
suppressed by absorption. The relation of the time-delay matrix to the reflection matrixS†S is established at
arbitrary absorption that gives us the distribution of reflection eigenvalues. The particular case of single-
channel scattering is explicitly considered in detail.
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There is a growing interest in statistical properties of
Wigner-Smith matrixQ(E)52 i\S†]S/]E @1,2#, with S(E)
being the scattering matrix at the collision energyE, in the
cases of chaotic scattering and transport in disordered m
@3#. In the resonance scattering, the matrix elementQcc8 de-
scribes the overlap of the internal parts of the scattering w
functions in the incident channelsc and c8 @2,4#. This di-
rectly relates the Wigner-Smith matrix to the effective no
Hermitian HamiltonianH5H2( i /2)VV† of the unstable in-
termediate system as follows~henceforth\51! @4#:

Q~E!5V†
1

~E2H!†

1

E2HV. ~1!

The Hermitian partH stands here for the closed counterp
of the system while the amplitudesVn

c describe the coupling
betweenN interior andM channel states. The random-matr
theory approach is usually adopted to simulate the com
cated intrinsic motion@5–7#.

The known analytical results@8–14# are restricted to the
idealization neglecting absorption. The latter is, however,
ways present to some extent under laboratory conditions,
ing one of the sources of a coherence loss in quantum tr
port. This has dramatic consequences for the statis
observables@15,16#. Necessity of proper accounting of finit
decoherence@17# was recently emphasized@18# in order to
remove a certain discrepancy between theory@19,20# and
experiment@16# on conductance distributions in quantu
dots. Reflection in a weakly absorbing medium turned ou
be directly related@15,21,22# to the time-delay matrix with-
out absorption. Recent experiments@23# in microwave cavi-
ties demonstrated that the absorption~due to the skin effect
in the walls! may be strong, leading to an exponential dec
@15,23#.

In this paper we show that representation~1! in terms of
the effective Hamiltonian allows us to extend the consid
ation to the case of an arbitrary absorption. The nature of
exponential decay caused by absorption can be easily un
stood from the following model consideration which actua
1063-651X/2003/68~3!/036211~5!/$20.00 68 0362
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goes back to the concept of the spreading width in nuc
physics @24#; see Ref.@4# for the recent developments. I
addition to coupling to continuum~scattering! states the
originally closed system is considered to be also coupled
the background compound environment. The latter ha
very dense spectrum with the mean level spacingDbg being
much smaller than the corresponding oneD of the closed
system,Dbg!D. When the coupling strengthv2 is large
enough to mix background states,v2.Dbg

2 , the original lev-
els acquire the damping or spreading widthG↓[2pv2/Dbg
@4,24#. Corrections to the resulting exponential decay sh
up at the timet* ;Dbg

21 and, therefore, can be safely ignore
on mesoscopic scale of the Heisenberg timetH[2p/D!t*
we are interested in.

In the absorption limit of continuous spectrum of th
background, when an irreversible decay into walls tak
place, this description becomes equivalent to that achieve
the framework of the Bu¨ttiker’s model of dephasing in me
soscopic conductors; see Fig. 1@25#. One considers@17,19#
Mf fictitious scattering channels in addition toM real ones.
The vanishing transmissionTf→0 of the fictitious channels
is assumed to be compensated by their large numberMf
→`, the dimensionless absorption rateg5MfTf being
kept fixed@20#. Then the anti-Hermitian part of the effectiv
HamiltonianH, which describes coupling to~all! open chan-
nels, splits readily as(M

c,realVn
cVm

c * 1dnmGa @20# into the
escape contribution~first term! and damping one withGa

[ta
21[gD/2p. An exponential decay, associated with t

last term, lasts up to the characteristic timet* 5tH /AgTf
@26# being large as compared totH .

FIG. 1. An open cavity with absorption in walls modeled b
coupling to~a! the compound background or~b! an infinite number
of fictitious channels with vanishing transmission probabilities.
©2003 The American Physical Society11-1
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The consideration presented suggests thatnonzeroabsorp-
tion is equivalent to the purely imaginary shiftE1( i /2)Ga
[Eg of the energy in the Green’s function (E2H)21 of the
open systemwithoutabsorption as long as resonance scat
ing far from the channel thresholds is concerned@27#; see
also Refs.@22,28#. This is in agreement with the availab
data on correlations ofS matrix elements in cavities with
absorption@23#.

In what follows we consider the time-delay matrix wi
absorptionQg[Q(Eg), with Q from Eq. ~1!, treating g
5GatH as a phenomenological parameter. The important
lation for the reflection matrix

R[Sg
†Sg512GaQg ~2!

follows directly from the definition of the scattering matr
Sg[S(Eg)512 iV†(Eg2H)21V, which is subunitary (R
,1) at nonzero absorption. This relation givesQg the mean-
ing of the matrix of unitarity deficit and generalizes limitin
expressions of Refs.@21,22# valid at weak absorption to th
case ofarbitrary Ga . Qg is an M3M Hermitian, positive-
definite matrix and, therefore, has real positive eigenval
qc , the so-calledproper delay times. They were recentl
studied in much detail for the case of zero absorpt
@13,14#. Even a weak absorption modifies their statistic
properties significantly, as will be shown below.

We begin with the calculation of the average total de
time qtot[q11•••1qM5trQg , where the bar denotes th
ensemble average. Making use of the invariance of the t
under cyclic permutations and the following relationVV†

5 i @(Eg2H)†2(Eg2H)#2Ga , one gets

qtot5Im Tr
22

Eg2H 2GaTrS 1

Eg2H
1

~Eg2H!†D , ~3!

where Tr acts in theN-dimensional intrinsic space of reso
nances. The first term is known@8,9# to be equal to the
Heisenberg timetH . To calculate the second one, it is in
structive to go to the time domain and to exploit the we
known relation between the Green’s function and the ti
evolution operator exp(2iHt). This enables us to represe
Eq. ~3! in the following form:

t tot[
qtot

tH
512GaE

0

`

dt e2GatP~ t !, ~4!

where P(t)[(1/N)Tr(eiH †te2 iHt) is the ‘‘norm-leakage’’
decay function introduced in Ref.@26#. The average delay
time within the cavity becomes smaller due to addition
dissolution in the walls. The average weighted-mean refl
tion coefficient ^r &[M 21trR̄ is correspondingly given by
^r &512gt tot /M .

P(t) can be calculated by means of Efetov’s supersy
metry technique@5,29#, which becomes now a standard an
lytical tool. Here we only state the corresponding result
the case of preserved time-reversal symmetry~TRS!:
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P~ t !5E
21

1

dlE
1

`

dl1E
1

`

dl2m~l i !dS t

tH
2

l1l22l

2 D
3 f ~l i !)

c51

M F ~gc1l!2

~gc1l1l2!22~l1
221!~l2

221!
G 1/2

,

~5!

where m(l i)5(12l2)/(l1
21l2

21l222ll1l221)2 and
f (l i)5(2l1

2l2
22l1

22l2
22l211)/4. The quantities gc

52/Tc21>1 are related to the transmission coefficien

Tc512uS̄ccu2 @5#, which determine the openness strength
the system~without absorption!, referring T51 ~0! to the
completely open~closed! one. For reader’s convenience, w
note that the result for the case of broken TRS@26# follows
from Eq.~5! by removing there thel2 integration and setting
l251 everywhere in the integrand save the integration m
sure m(l i)5(l12l)22 in this case@30#. It is also worth
pointing out the relation betweenP(t), Eq. ~5!, and the au-
tocorrelation function of the photodissociation cross sect
@31#. The exact~in the RMT limit N→`) Eq. ~4! is valid for
any symmetry and will also be derived below using a diffe
ent way.

The norm leakage is identical to unity when the system
closed~hence the norm!. Its time dependence is solely due
the openness of the system and has been thoroughly stu
in Ref. @26# that allows us to understand the qualitative d
pendence ofqtot on absorption. The typical behaviorP(t)
;)c51

M @11(2/b)Tct/tH#2b/2, with b51 (2) standing for
preserved~broken! TRS, is the simple exponential ex
(2t(cTc /tH) at small enough times. In the so-called ‘‘diag
nal approximation’’@26#, which neglects the nonorthogona
ity of the resonance wave functions and becomes asymp
cally exact at larget, P(t) turns out to be related by th
Laplace transformPdiag(t)5*0

`dG e2Gtr(G)[^e2Gt&G to
the distributionr(G) of resonance widths. One gets read
from Eq. ~4! that t tot5^G/(G1Ga)&G within this very ap-
proximation. The simple interpolation formulat tot'(1
1g/(cTc)

21 with corrections of the order o
min@1/g,1/(cTc# becomes exact as the absorption rateg
and/or the total~dimensionless! escape width(cTc grows.

We proceed further with an analysis of the distribution
the proper delay timesP(q)5M 21(cd(q2qc). For the
sake of simplicity, we restrict ourselves to the case of brok
TRS ~the unitary symmetry class!. The factorized represen
tation ~1! of Qg enables us to use the same method dev
oped in Ref.@14# to treat the zero absorption case. Thus,
skip all standard technical details, indicating only essen
ones. As usual, the jump of the resolventG(z)
5M 21tr(z2Qg)21 on the discontinuity line alongq5Rez
.0 determines the seeking distribution as follows:P(q)
5p21Im G(q2 i0). Due to the factorized structure ofQg ,
G(z) can then be represented in the form suitable for sub
quent supersymmetry calculation@32#. We find the following
expression for the determining partK(z5z/tH)
[Mz2@ tHG(z)21/z#:
1-2
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DELAY TIMES AND REFLECTION IN CHAOTIC . . . PHYSICAL REVIEW E 68, 036211 ~2003!
K~z!511
1

2E1

`

dl1E
21

1 dl

l12l)
c51

M
gc1l

gc1l1

3S ]

]n1
2

]

]n Dbg~l1! f g~l!un15n51 . ~6!

Here bg(l1)5e(12gz/2)n1l1 /zI 0„(n1/z)A(12gz)(l1
221)…

and f g(l)5e2(12gz/2)nl/zJ0„(n/z)A(12gz)(12l2)…, with
I 0(x)@J0(x)# being the modified@usual# Bessel function. The
resolventG(z) given by Eq.~6! is an analytical function of
the complex variablez for the negative values of Rez and,
therefore, can be expanded there in Taylor’s series. One fi
directly from the definition of G that tHG(z)51/z
1tr Qg/(Mz2tH)1••• for large z, relating thusqw to the
coefficient of the second term of this expansion. On the ot
hand, this coefficient is given just byK(2`) which can
easily be calculated from Eq.~6! to reproduce exactly Eq
~4!.

An analytical continuation in Eq.~6! to the region of posi-
tive t[Rez requires more care as compared to the case@14#
of zero absorption, where it was achieved by a proper de
mation of an original integration contour. First we make t
following decomposition in partial fractions:

1

l12l)
c51

M
gc1l

gc1l1
5

1

l12l
2 (

a51

M
1

ga1l1
)

b(Þa)

gb1l

gb2ga
.

The contribution from the term (l12l)21 leads to an exac
cancellation of the first term in Eq.~6!. @This is not surpris-
ing since the product term in Eq.~6!, the channel factor
which determines solely the strength of system openn
reduces atl15l to unity, resultingG(z)51/z in this case
identically.# The integration overl1 gets completely decou
pled from that overl in the contribution from the rest sum
Making use of the table integrals@33#, one finds that

E
1

`dl1esl1

g1l1
I 0~aAl1

221!5E
0

`

dp
e2gpeA(p2s)22a2

A~p2s!22a2
,

~7!

with notationss[t212g/2 and a[t21A12tg. Just this
term ~7! has a nonzero imaginary part, thus the distributi
at positivet2 i0. A close inspection of the right-hand side
Eq. ~7! shows that the imaginary part is determined by
integration regions2a,p,s1a, resulting at the end in
pI 0(aAg221)Q(t212g), with the step functionQ(x).

We arrive finally at the following general expression f
the probability distribution of the proper delay times:

PS t5
q

tH
D5

1

M (
c51

M S ]

]n
2

]

]n1
DBcFcun15n51 , ~8!

for 0,t<g21, andP(t)[0 otherwise. Here
03621
ds

er

r-

s,

,

e

Bc5e2n1sgcI 0~n1aAgc
221! )

a(Þc)

1

ga2gc
, ~9a!

Fc5E
21

11dl

2
e2nslJ0~naA12l2! )

a(Þc)
~ga1l!. ~9b!

The obtained result is valid for arbitrary absorption stren
and arbitrary transmission coefficients ofM generally non-
equivalent channels. The limit of zero absorption@14# is cor-
rectly reproduced. The case of statistically equivalent ch
nels can easily be worked out by performing the limitin
transitiongc→g52/T21 for all c. At last, the distribution
function PR(r )5M 21(cd(r 2r c) of reflection eigenvalues
r c512gqc /tH follows readily from Eq.~8! as

PR~r !5g21P„g21~12r !…, 0<r ,1. ~10!

We see that the absorption rateg enters the distribution in
a highly nontrivial way. This is expected to be true for a
distribution function and is contrasted with a correlati
function of, say,S matrix elementsSab* (Eg)Sa8b8(Eg1«).
The corresponding form factor@23# ~the Fourier transform of
the correlation function! differs from that @5# of the zero
absorption case simply by the presence of an additional
ponential terme2gt/tH. The most striking effect of finite ab
sorption on the time-delay distribution is likely to consist
suppression of the universal long-time tailst2M (b/2)22 @10–
14# at t.g21 @34#. To understand this fact qualitatively, w
note that the delay timeq(E)'Gn /@(E2En)21 1

4 (Gn
1Ga)2# in the vicinity of a given resonance with the energ
En . The maximal value of this single-resonance contribut
is attained atE5En , being qmax54Gn /(Gn1Ga)

2<1/Ga for
any value of the~positive! escape widthGn .

We analyze now the important case of single-chan
scattering,M51, in more detail. The explicit expression t
be obtained from Eq.~8! reads as follows:

P~t!5
e2gs

t2 H I 0~aAg221!S cosh
g

2
2

2

g
sinh

g

2D
1

2

g
sinh

g

2
@gsI0~aAg221!

2aAg221I 1~aAg221!#J . ~11!

We have explicitly checked the normalization of this dist
bution to unity and verified relation~4! for the first moment.
This function should be compared to the more simple exp
sionPg50(t)5t21(]/]t)e2g/tI 0(t21Ag221) @10# valid at
zero absorption. Figure 2 shows the behavior ofP(t) in two
limiting cases of the weakly and perfectly open system. O
sees in the first case that the maximum of the distribut
function at the small timet;(2g)21'T/4!1 gets more
pronounced and narrow as the absorption rateg grows. At
larger values oft the distribution is exponentially suppresse
with P(g21)'(g2/T)e2g/T. The latter is contrasted with th
behavior in the case of perfect coupling,g5T51, when
1-3
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D. V. SAVIN AND H.-J. SOMMERS PHYSICAL REVIEW E68, 036211 ~2003!
PT51(t)5t22e21/t@11(12t)(eg21)/tg# and P(g21)
could be rather large. We relate these distinctions to pe
liarities in fluctuations of the resonance escape widths in
two cases considered. The width distributionr(G), which is
known exactly@10# for any T and M, has the simple expo
nential forme2GtH /T when coupling is small,T!1, and the
power law behavior;G22 at G*tH

21 whenT51. The ratio
of the widthsG;Ga determiningP(t;g21) is, therefore,
exponentially small in the first case and only a power in
second. This conclusion holds for any finiteM.

The sharp border att5g21 of the obtained distribution is
the direct consequence of Eq.~2! with the absorption rate
fixed to a constant. Although, as shown above, the va
P(g21) of the jump may be exponentially small when co
pling is weak, a generic exponential suppression should
intuitively expected at large values of delay timest@g21.
Indeed, for the timedt a wave packet oscillating in the cavit
with the frequency D/2p, on an average, experience
(D/2p)dt collisions with the walls, yielding the probability
Tf(D/2p)dt to be absorbed into one ofMf fictitious chan-
nels. The total reflection is then estimated asR.@1
2Tf(D/2p)dt#Mf, giving e2gdt/tH in the limit of fixed g
5MfTf asMf→` andTf→0. It is instructive, therefore
to define alternatively through the following relationR
[e2GaQR the matrixQR , which we call the matrix ofreflec-
tion time delays. The positive-definite matrixQR is related to
Qg as QR52Ga

21ln(12GaQg) that leads to the following
connection:

PR~t r !5e2gtrP„g21~12e2gtr !…, t r.0, ~12!

between the corresponding distributionsPR(t r) andP(t) of
proper delay times~eigenvalues ofQR and Qg , respec-
tively!. Both QR and Qg reduce to the same Wigner-Smi
matrix ~1! in the limit of vanishing absorption. The differ
ence between them becomes noticeable at finiteg. Still both
distributions coincide up to the time appreciably less th
g21. They start to differ at larger times, whenP(t) has the
cutoff whereasPR(t@g21)}e2gt is exponentially sup-
pressed.

Finally, we discuss the distributionPR(r ) of the reflection
coefficient r 5uSgu2512gt in the single-channel cavity
This distribution at arbitrary values ofg andT is explicitly

FIG. 2. ~Color online! Distribution ~11! of the time delay in
single-channel scattering for different values of the absorption
g at weak (T50.1, left! and perfect (T51, right! coupling.
03621
u-
e

e
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n

given by Eqs.~10! and ~11!, reproducing exactly the recen
result @35# obtained by a different method. In the particul
case of perfect coupling it simplifies further to the express
PT 51(r ) 5 (12r )23e2g / (12r ) @g(eg 21) 1 (11g 2eg)(1
2r )# found earlier@22#. For the case of preserved TRS (b
51), the reflection coefficient distribution in a microwav
cavity has recently been measured@36#. Our distribution
PR(r ) at the values of absorption and transmission reali
in this experiment under compulsory~although not surprising
in the RMT! rescalingg to gb/2 with b51 is shown in Fig.
3. ~This corresponds to replacing our parameterg in Eqs.
~10! and ~11! with Tw/2 of Ref. @36#.! That should roughly
take into account the difference between the symmetry c
of our analytical result (b52) and that of the experiment
Such a replacement is expected to become more efficien
absorption grows. The trend is clearly seen from the dis
bution sharply peaked nearr;1 at weak absorption (g
!1) to the Rayleigh distributionPR(r ).(gb/2)e2rgb/2

@28#, see also Ref.@22#, reproduced correctly at strong ab
sorption (g@1) and perfect coupling (T51). Figure 3 is in
good qualitative agreement with the experimental data
ported in Ref.@36# ~see Figs. 4 and 6 there!, which becomes
even quantitative as absorption gets stronger. The rigor
analytical treatment for the case of preserved TRS is
lacking, being under current investigation.

In summary, we have calculated the general distribut
of proper delay times and reflection coefficients in an op
chaotic system~e.g., billiard! with broken TRS at arbitrary
absorption. Finite absorption leads to strong suppressio
fluctuations at large values of delay times, making the dis
bution narrower around the mean. The latter as well as
mean reflection coefficient are found to be related to
norm-leakage decay function. The particular case of sing
channel scattering is paid appreciable attention, when dis
sion of available experimental data is also given.

We are grateful to Y. V. Fyodorov, G. Hackenbroich, U
Kuhl, V. V. Sokolov, H.-J. Sto¨ckmann, and C. Viviescas fo
useful discussions. This work was partly an outcome of
ongoing initiative Sonderforschungsbereich/Transregio 60
The partial financial support by the SFB 237 and RFB
Grant No. 03-02-16151~D.V.S.! is acknowledged.

te

FIG. 3. ~Color online! The reflection coefficient distribution in
the single-channel cavity at four experimental realizations@36# of
the absorption rate and transmission coefficient~see the text for
details!. The values (2g,T) correspond to I~0.56, 0.12!, II ~2.42,
0.75!, III ~8.4, 0.98!, and IV ~48, 0.99!.
1-4
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